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SUMMARY

In this paper we present a comparative study of three non-linear schemes for solving ®nite element systems of
Navier±Stokes incompressible ¯ows. The ®rst scheme is the classical Newton±Raphson linearization, the second
one is the modi®ed Newton±Raphson linearization and the last one is a new scheme called the asymptotic±
Newton method. The relative ef®ciency of these approaches is evaluated over a large number of examples. #
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1. INTRODUCTION

This study deals with the evaluation of different numerical methods for solving highly non-linear

incompressible ¯ows. A Galerkin-type ®nite element discretization with the velocity ®eld richer than

the pressure ®eld is employed to obtain the discretized non-linear relations. The solution strategy

involves a proper choice of linearization technique and method of resolution for the corresponding

linear system.

One of the ®rst methods employed with ®nite volume discretization is based on the SIMPLE1

(semi-implicit method for pressure-linked equations) technique, which involves a segregated strategy

along with a Jacobi-type linearization. With present-day computing power it seems that the use of a

Newton-type linearization without segregation is highly ef®cient.

A major drawback of the Newton±Raphson method is the required factorization of the tangent

matrix for each iteration. A variant of this method is the modi®ed Newton method, where the tangent

matrix is factorized only once for a number of steps. The occasional tangent matrix update strategy

may lead to poor convergence for ¯ows with dominant convective terms. We may improve the

convergence behaviour by constructing the solution space through the asymptotic representation of

the residue in the form of a series expansion using a single parameterization. Such an approach has

been successfully employed for non-linear ¯exible structures under the name of the asymptotic±

numerical method.2,3
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The purpose of the present study is to investigate the ef®ciency of Newton-type occasional tangent

matrix update, coupled with the construction of the solution space using an asymptotic representation

for non-linear incompressible ¯ows. The relative ef®ciency of different Newton-type methods will be

assessed for a number of two-dimensional ¯ows with different Reynolds numbers.

2. MATHEMATICAL MODEL7,8

Incompressible ¯ow is governed by the following momentum and mass conservation relations:

momentum conservation �r constant�
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mass conservation

@u

@x
� @v
@y
� 0; �1b�

boundary conditions

solid wall : ~u � 0;

inflow boundary : ~u � ~n � un;

stress-free boundary :
@un

@n
� 0;

@ut

@n
� 0; p � ~p;

where ~u � hu; vi are the Cartesian velocity components, ut and un are the tangential and normal

components at the boundary with normal ~n; p is the pressure, r is the density, m is the viscosity,

W � m=r is the kinematic viscosity and r~f is the body gravity force. The above relations may be

written in the following form by grouping linear and non-linear terms:
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The weak form associated with equation (2) is

W � WL �WQ �Wext � 0; 8du; dv; dp; �3�
with

WL �
�

A

�d~u � Hp� Hdu � mHu� Hdv � mHvÿ dpdiv � ~u� dA;

WQ �
�

A

du � @

@x
�uu� � @

@x
�uv�

� �
� dv � @

@x
�uv� � @

@y
�vv�

� �� �
dA;

Wext � ÿ
�

A

�du � rfx � dy � rfy� dAÿ
�

s2

�dutft � dunfn� ds;

where du; dv and dp are Galerkin-type test functions and S2 is the Neumann stress boundary. The

discretized model associated with equation (3) is obtained by using the ®nite element approximation

satisfying the required consistency and stability conditions:

Wh � WhL �WhQ �Whext � 0; 8dun; dvn; dpn;

or (4)

fRL�un�g � fRQ�un; un�g ÿ fFng � 0;

with

WhL � hdunifRL�un�g; WhQ � hdunifRQ�un; un�g; Whext � ÿhdunifFng;
where fung are the nodal variables, fdung are the nodal test function components and fFng is the load

vector including Neumann boundary conditions.

We employ a P2±P1 element for the ®nite element approximation: a triangle is composed of four

subtriangles, the velocity ®eld is linear on each subtriangle and the pressure ®eld is linear on the base

triangle (Figure 1). Over each subtriangle,

hu; vi �P Nihu; vii; hu2; uv; v2i �P Nihu2; uv; v2ii; �5�
and similarly for du and dv. Over each base triangle,

p �P Nipi:

Figure 1. P2±P1 element: left, reference triangle for subtriangle or base triangle; right, six-node base triangle composed of four
subtriangles
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3. NEWTON-TYPE LINEARIZATION

In order to solve the set of non-linear algebraic equations (4), a certain type of linearization is

necessary. In effect, one transforms the non-linear problem into a series of linear problems such that

the subspace of linear solutions converges to the required non-linear solution. The success of such an

iterative strategy depends on the construction of the linearized problem. It is well known that if the

initial estimate is close to the exact solution, the Newton-type linearization has excellent convergence

properties.

The main features of a Newton-type solution method are as follows.

1. The solution fU0g is known for a load level fF0g which may correspond to a given Reynolds

number

fR0g � fRL�U0�g � fRQ�U0;U0�g ÿ fF0g � f0g: �6a�
2. Choose the load level or Reynolds number

fFg � fF0g � afF1g: �6b�
One may ®x the amplitude a or calculate it using the norm of the ®rst solution vector.

3. Obtain the solution by solving a set of linear problems. The solution space is spanned by

fU �1�g; fU �2�g; . . . ; fU �m�g which are obtained by solving linear systems. We then seek the

solution fUg such that

fUg � fU0g � a1fU �1�g � a2fU �2�g � � � � � amfU �m�g; �7a�

fR�U �g � R U0 �
Pm
i�1

aiU
�i�

� �� �
� 0: �7b�

The vectors fU �i�g are solutions of linear problems

�KT� U �i�g � f �R�i�g � 0;
� �8a�

leading to

fR�U �g �P ��KT�fU �i�g � f �R�i�g� � f0g: �8b�
The matrix [KT] is obtained by using Newton-type linearization for a known fUg. The vector f �Rg

may correspond to the expression of fRg or may correspond to an asymptotic representation. The

coef®cients ai represent relaxation parameters or asymptotic expansion. Relation (7b) must be

satis®ed in order to obtain the desired solution.

The choice of [KT] and f �Rg leads to a family of methods which are presented in the following

subsections.

3.1. Newton±Raphson method

The tangent matrix [KT] is calculated for a given estimate of the solution fUg. This is obtained by

discretizing the expression DW which is linear in fDUg:
W �U � DU � � W �U � � DW � . . . ; �9a�

DWh � hduni�KT�fDug: �9b�
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If we choose ai � 1, then

fUg � fU0g � fU �1�g � fU �2�g � . . . ; �10a�

KT U0 �
Piÿ1

j�1

U �j�
 !" #

U i
� 	 � ÿ �R

� 	
; �10b�

with

f �Rg � R U0 �
Piÿ1

j�1

U j

 !( )
:

The vectors fU �1�g and fU �2�g represents incremental vectors fDUg for each iteration. The increment a

of equation (6b) may be chosen as follows.

1. The user de®nes the value of a.

2. The user de®nes the value of the norm s0 such that

ka � U �1�k � s0: �11�
3. Adjust the value of a at each iteration level for a given norm s0 based on the notion of arc

length4 (Figure 2).

(a) OP1

ka � U �1�k � s0: �12a�
(b) OP2

orthogonalization : �DaU �1� � U �2�� � U �1� � 0; a � a� Da; O �P2 � OP1 � �DaU �1� � U �2��;
adjustment : OP2 � �O �P2=jO �P2j�s0:

�12b�
(c) OP3

orthogonalization : �DaU �1� � U �3�� � U �2� � 0; a � a� Da; O �P3 � OP1 � �DaU �1� � U �3��;
adjustment : OP3 � �O �P3=jO �P3j�s0:

�12c�
The Newton±Raphson algorithm is summarized in Figure 3.

Figure 2. Adjustment of a by arc length
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3.2. Modi®ed Newton±Raphson method

This method is identical with the Newton±Raphson method except that the tangent matrix is

calculated and factorized once at the beginning of iterations or maintained constant over a number of

load steps. The computationally expensive operation of factoring [KT] is performed occasionally,

which leads to relative ef®ciency of the solution method. If the convergence behaviour becomes slow

or erroneous, we recalculate [KT] and perform a number of iterations to obtain the desired solution.

4. ASYMPTOTIC±NEWTON METHOD

As presented at the beginning of the last section (equations (7b)), the essential aspects of the solution

method are the choice of the tangent or Jacobian matrix [KT] and the choice of the residue vector f �Rg
for each iteration. In the asymptotic method we have the following.

1. The tangent matrix is calculated once at the beginning of iterations or at the beginning of a

certain number of load cycles. This step is then identical with the modi®ed Newton±Raphson

method.

2. The evaluation of the residue vector is done in a special manner which differs from that of the

residue vector employed for the Newton±Raphson or the modi®ed Newton±Raphson method.

A non-linear problem is represented by a set of linear problems. The solution is written in series

form with respect to a load parameter a:

fFg � fF0g � afF1g;
fUg � fU0g � afU �1�g � a2fU �2�g � a3fU �3�g � � � � � amfU �m�g: �13a�

The expression for the residue becomes

fR�U �g � fR0g � afR�1�g � a2fR�2�g � a3fR�3�g � � � � � amfR�m�g; �13b�

Figure 3. Newton±Raphson algorithm
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which leads to a set of linear problems associated with each power series term:

fR0g � f0g;
fR�1�g � �KT0�fU �1�g ÿ fF1g � 0;

fR�2�g � �KT0�fU �2�g � f �R�2�g � 0;

..

.

fR�m�g � �KT0�fU �m�g � f �R�m�g � 0:

�14�

The typical feature of the asymptotic method lies in the evaluation of the residue vector f �R�i�g. The

residue vector in the Newton method corresponds to the expression of W for an estimated solution

fUg. In the asymptotic method the residue vector corresponds to the expression related to

a; a2; . . . ; am. Let us take a single-degree-of-freedom non-linear algebraic equation to explain the

method.

4.1. Single-variable non-linear equation

A quadratic non-linear equation is de®ned by

L�U � � Q�U ;U � ÿ F � 0

or

k0U � k1U2 ÿ �F0 � aF1� � 0: �15�
One supposes that the solution U0 for a given F0 is known:

R0 � k0U0 � k1U2
0 ÿ F0 � 0:

For the modi®ed Newton±Raphson method the series of linear problems is (Um corresponds to U �m�)

KT0 � k0 � 2k1U0; �16a�

R1L � KT0U1 � k0U0 � k1U 2
0 ÿ F0 ÿ aF1|���������������������{z���������������������}
R1

� KT0U1ÿaF1 � 0|������{z������}
R1

�DU � U1�;

R2L � KT0U2 � k0�U0 � U1� � k1�U0 � U1�2 ÿ F0 ÿ aF1|������������������������������������{z������������������������������������}
R2

� KT0U2 � k1U 2
1|�{z�}

R2

� 0;

U � U0 � U1 � U2;

R3L � KT0U3 � kU � kU 2 ÿ F0 ÿ aF1|������������������{z������������������}
R3

� KT0U3 � k1�2U1U2 � U 2
1 �|������������{z������������}

R3

� 0; �16b�

U � U0 �
P

j�1;3
Uj;

..

.

RmL � KT0Um � kU � kU2 ÿ F0 ÿ aF1|������������������{z������������������}
Rm

� KT0Um � k1 2
Pmÿ2

1

Uj

Pmÿ1

j�1

Ui � U2
mÿ1

 !
|�������������������������{z�������������������������}

Rm

� 0;

U � U0 �
P

j�1;m
Uj:
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For the asymptotic±Newton method (Um de®nes U �m�) we have

U � U0 � aU �1� � a2U �2� � � � � � amU �m�;
F � F0 � aF1

�17a�

and the series of linear problems is

R � R0 � aR1 � a2R2 � � � � � amRm; �17b�

with

R0 � k0U0 � k1U2
0 ÿ F0 � 0;

R1L � KT0U1 �� �R1 � 0; �R1 � ÿF1 �identical with MNÿ R method�;
R2L � KT0U2 � �R2 � 0; �R2 � k1U2

1 �identical with MNÿ R method�;
R3L � KT0U3 � �R3 � 0; �R3 � 2k1U1U2 �different from MNÿ R method�;

..

.

RmL � KT0Um � �Rm � 0; �Rm � k1

Pmÿ1

j�1

UjUmÿ1ÿj:

In Figures 4(a)±4(c) we represent the essential characteristics of the Newton±Raphson (N±R),

modi®ed Newton±Raphson (MN±R) and asymptotic±Newton (A±N) methods respectively.

Example (N±R method)

�K1�U0��fU1g � afF1g;
�K2�U0;U1��fU2g � ÿfQ�U1;U1�g � ÿfR2g;

�K3�U0;U1;U2��fU3g � ÿfQ�U2;U2�g � ÿR3:

Figure 4(a). Representation of Newton±Raphson method
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Remark. The residue vector for the Newton±Raphson method corresponds to discretization of

Q�U ;U � with U � DU at the last iteration.

Example (MN±R method)

�K1�U0��fU1g � faF1g;
�K2�U0��fU2g � ÿfQ�U1;U1�g � ÿfR2g;
�K3�U0��fU3g � f2Q�U1;U2�g � ÿfR3g;
K1 � K2 � K3 � � � � � Km:

Example (A±N method)

�K1�U0��fU1g � fF1g;
�K2�U0��fU2g � ÿfQ�U1;U1�g � ÿf �R2g;
�K3�U0��fU3g � ÿf2Q�U1;U2�g � ÿf �R3g �different from R3 of MN R method�;
K1 � K2 � K3 � � � � � Km:

Figure 4(c). Representation of asymptotic±Newton method

Figure 4(b). Representation of modi®ed Newton±Raphson method
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4.2. Asymptotic±Newton method for Navier±Stokes ¯ow

The numerical implementation of the asymptotic method for incompressible ¯ow is straightfor-

ward. We have

u � u0 � au1 � a2u2 � � � � � amum;

v � v0 � av1 � a2v2 � � � � � amvm;

p � p0 � ap1 � a2p2 � � � � � ampm;

~f � ~f0 � a~f1:

�18�

Substitution of the above expansion into equation (3) followed by ®nite element discretization leads

to the asymptotic representation of the residue vector as

fRg � fR0g � afR1g � a2fR2g � � � � � amfRmg;
where R0;R1;R2; . . . ;Rm corresponds to discretization of equation (3).

Residue R0

fR0g :
P �

Ae

�d~u � Hp0 � m0�Hdu � Hu0 � Hdv � Hv0� ÿ dp div � ~u0� dA

�
�

Ae

du
@A0

@x
� @B0

@y

� �
� dv

@B0

@x
� @C0

@y

� �� �
dA�Wext � 0; �19�

where

A0 �
P

Ni�A0�i; B0 �
P

Ni�B0�i; C0 �
P

Ni�C0�i;
�A0�i � �u0 � u0�i; �B0�i � �u0 � v0�i; �C0�i � �v0 � v0�i

(see equation 5) and Ni are element approximation functions.

Residue R1

fR1g � �KT0�fU1g ÿ afF1g � 0: �20a�
[KT0] is the tangent matrix at �~u0; p0� which corresponds to

�KT0�fU1g :
P �

Ae

�d~u � Hp1 � m0�Hdu � Hu1 � Hdv � Hv1� ÿ dp div � ~u1� dA

�
�

Ae

du
@�2u0u1�
@x

� @�u0v1 � u1v0�
@y

� �
� dv

@�u0v1 � u1v0�
@x

� @�2v0v1�
@y

� �� �
dA:

�20b�
fF1g corresponds to the load vector associated with ~f1, modi®ed by the increment of boundary

conditions or the increment to viscosity depending on the Reynolds increment strategy. The

approximations of quadratic terms are

�u0u1� �
P

Ni�u0�i � �u1�i; �v0v1� �
P

Ni�v0�i � �v1�i; �u0v1� �
P

Ni�u0�i � �v1�i:
�20c�
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Residue Rm

fRmg � �KT0�fUmg ÿ f �Rmg � f0g: �21a�
The residue f �Rmg is the discretization of the following expression associated with quadratic terms:

f �Rmg :
P

elements

�
Ae

du
@Am

@x
� @Bm

@y

� �
� dv

@Bm

@x
� @Cm

@y

� �� �
dA: �21b�

The ®nite approximations are �Am;Bm;Cm� �
P

Ni�Am;Bm;Cm�i and the terms Am;Bm and Cm are as

given by equation (17b):

Am �
Pmÿ1

j�1

uj � umÿ1ÿj; Bm �
Pmÿ1

j�1

uj � vmÿ1ÿj; Cm �
Pmÿ1

j�1

vj � vmÿ1ÿj: �21c�

Remark. Equation (21c) represents the essential expression of the asymptotic±Newton method.

4.3. Implementation of asymptotic±Newton method

In order to obtain the solution using the asymptotic method, one has to store the vectors of the

solution space of size m:

fU0g; fU1g; . . . ; fUmg:
The tangent matrix for each step is maintained constant and the residue is calculated using equation

(20a) for the ®rst vector and equation (21b) for the following vectors. The calculation is

straightforward once Am;Bm and Cm are obtained at each node using equation (20c).

Different aspects of the solution strategy employed are described below.

Incrementation of Reynolds number

The solution may be obtained by choosing the viscosity or velocity conditions corresponding to a

given Reynolds number in a single step. However, for complicated ¯ows the solution is obtained by

incrementing the Reynolds number in steps. One may thus have at the boundary nodes

u � u0 � au1; v � v0 � av1 �22a�
or, keeping the velocity conditions constant and varying the viscosity,

m � m0 � am1; �22b�
thus obtaining �R1.

Choice of parameter a

The choice of a is controlled by limiting the size of the ®rst vector fU1g for a given size s0:

akU1k � s0: �23a�
If the solution fU0g does not lead to fR0g � f0g, we may evaluate fU1g using

�KT0�fU1g � f �R1g � fR0=ag �23b�
and evaluate a by

ak �U1 � U
�0�
1 =ak � s0; fU1g � f �U1g � fU �0�1 =ag: �23c�
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Size of solution space

The choice of the number m of solution vectors may be controlled by the residue norm. However, if

m becomes relatively large, one may restart the solution sequence by updating the initial vector:

fUg � fU0g � afU1g � a2fU2g � � � � � amfUmg:
The asymptotic±Newton algorithm is summarized in Figure 5.

5. NUMERICAL EXAMPLES

In this section we compare the Newton±Raphson, modi®ed Newton±Raphson and asymptotic±

Newton methods for solving incompressible ¯ows with different Reynolds numbers. The numerical

experimentation is undertaken to study the following aspects:

(a) the quality of the solution obtained by the asymptotic method for different Reynolds numbers

(b) the convergence of the solution related to the number of vectors

(c) in¯uence of cycles (Figure 5) on the convergence for different Reynolds numbers.

Three typical examples are chosen which are extensively studied by ®nite element researchers.

Description of these examples are given in the following subsection. All examples are tested on a

VAX DEC ALPHA 3000-300-X machine. The unsymmetrical tangent matrix is stored using skyline

organization and factorized in the form [KT]=[L][S].5

Figure 5. Asymptotic±Newton algorithm
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5.1. Problem descriptions

Square cavity

A square cavity with an upper lid sliding at 1 m s71 is discretized using a 30630 triangular mesh

(Figure 6). The physical parameters are as follows: parameter, r� 1 kg m73; initial solution,

u � v � p � 0; boundary conditionsÐon AB, u � 1; v � 0; on CD, AC, BD, u � 0; v � 0; at A,

p � 0; viscosity, m� 0�1±0�001; Reynolds number, Re� 10±1000 in ®ve increments; number of

unknowns, 8500.

Step channel

The ¯ow in a backward-facing channel is studied using a triangular mesh for Re� 0±1200 (Figure

7). The geometrical parameters are given in Reference 6. The physical parameters are as follows:

parameter, r� 1 kg m73; initial solution, u � v � p � 0; boundary conditionsÐon AB, u �
ÿ4y2 � 4y, leading to uy�0�5 � 1; v � 0; on AD, DC, CE, FB, u � 0; v � 0; on EF, v � 0; p � 0;

viscosity, m� 0�005±0�000833; Reynolds number, Re� 0, 200±1200 in six increments; number of

unknowns, 8800.

Figure 7. Geometry and mesh for step channel

Figure 6. Geometry and mesh for square cavity
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Remark. The ¯ow is of Poiseuille type near AB; we have @p=@x � ÿ8m in this zone.

Convoluted channel

This problem is studied for Re� 10±200 with 8000 unknowns (Figure 8). The geometrical

parameters are given in Reference 6. The physical parameters are as follows: parameter,

r� 1 kg m73; initial solution, u � v � p � 0; boundary conditionsÐon AB; u �
ÿ36y2 � 60yÿ 24 �umax � 1�; v � 0; on BC, CE, EI, IJ, JL, KG, GH, HF, FD, DA, u � 0; v � 0;

on KL, v � 0; p � 0; viscosity, m� 0�033±0�00166; Reynolds number, Re� 0, 20±200 in 10

increments; number of unknowns, 8000.

5.2. Velocity and pressure pro®les

The solution obtained by the Newton±Raphson method is considered as reference. A convergence

norm of kDUk=kUk < 10ÿ4 is employed to control the precision. The step size and iteration numbers

for the three problems with Newton±Raphson are given in Table I.

Typical velocity and pressure pro®les for selected Reynolds numbers are presented in Figures 9±

11. The results obtained compare well with those reported in Reference 7. The zones of recirculation

are well captured.

5.3. Validation of asymptotic±Newton method

The converged results using the asymptotic±Newton method are found to be identical with the

results obtained by the Newton±Raphson method.

We study the in¯uence of the size of the solution space and the number of cycles on the

convergence behaviour of the method.

Figure 8. Geometry and mesh for convoluted channel
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Figure 10. Velocity and pressure pro®les for step channel for Re� 1000

Figure 11. Velocity and pressure pro®les for convoluted channel for Re� 200

Table I. Step size and iteration numbers for the three problems

Number of Reynolds number Number of tangent
Problem steps increment decompositions

Square cavity 5 10, 200, 400, . . . , 1000 15
Step channel 6 0, 200, 400, . . . , 1200 18
Convoluted channel 10 0, 20, 40, . . . , 200 30

Figure 9. Velocity and pressure pro®les for square cavity for Re� 1000
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Figure 13. Velocity u for step channel

Figure 14. Velocity u for convoluted channel

Figure 12. Velocity u for square cavity: 1 cycle, tangent matrix constant over each step; 2 cycles, one update of tangent matrix
over each step
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The solution is obtained in an incremental manner by increasing the Reynolds number in steps. In

Figures 12±14 we present the in¯uence of the size of the asymptotic space on the convergence. The

velocity values for the three problems are chosen at the points

square cavity : x � 0�50; y � 0�500;
step channel : x � 1�39; y � 0�166;

convoluted channel : x � 0�40; y � 0�143:

In Table II we summarize the convergence aspects of the solution with the parameter a� 1.

Using a single cycle for each step size, one obtains acceptable results even with a ®ve-vector

solution space. For a certain value of the Reynolds number a solution space with 10 vectors improved

the quality of the solution.

In another series of numerical validation experiments we employed two cycles with a solution

space composed of ®ve vectors. Excellent results are obtained which are identical with those obtained

by the Newton±Raphson method.

It has been found that a solution space of ®ve vectors with gradual incrementation of the Reynolds

number is the best strategy.

The computational cost of the asymptotic±Newton method is much less than that of the Newton±

Raphson method. The cost of the Newton±Raphson method for each iteration involves factorization

of [KT] and calculation of the residue vector (Table III).

Table III. CPU time in seconds for factorization and
residue calculation

Problem Factorization One residue

Square cavity 235 9
Step channel 24 5
Convoluted channel 166 9

Table II. Choice of parameters for asymptotic±Newton method

NCYCLE� 1 NCYCLE� 2

Number of Solution Number of Solution
Problem (steps) Re increment factorizations space m factorizations space m

Square cavity (5) 0, 200, . . . , 1000 5 5, 10 10 5, 10
Step channel (6) 0, 200, . . . , 1200 6 5, 10, 15 12 5, 10, 15
Convoluted channel (10) 0, 20, . . . , 200 10 5, 10 20 5, 10

Table IV. CPU time in seconds for Re� 200

A±N method

NCYCLE� 1 NCYCLE� 2

Problem N±R method m� 5 m� 10 m� 5 m� 10

Square cavity 994 275 322 521 610
Step channel 141 54 78 82 110
Convoluted channel 710 209 278 390 440
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The computation of the residue vector for different sizes of the solution space is approximately the

same as with a single vector (see equation (21)).

For all practical purposes the computational cost is related to the factorization of the tangent

matrix. An economy by a factor of three is obtained using the asymptotic±Newton method with m� 5

as compared with the Newton±Raphson method (Table IV).

6. CONCLUSIONS

In this study we have presented a new method called the asymptotic±Newton method for solving

highly non-linear incompressible ¯ows. A presentation of the method for calculating the residue

vector for a given space size is given for a simple case and for a general ®nite element formulation of

the Navier±Stokes equations.

One may consider the asymptotic±Newton method as an improvement of the modi®ed Newton±

Raphson method. The difference resides essentially in the calculation of successive residue vectors.

The numerical experimentation presented in this work and that given in Reference 7 have

demonstrated that the asymptotic±Newton method is a powerful tool for any computer code based on

a Newton-type linearization.

Work is under way to develop a technique for obtaining the optimal choice of load parameter a and

size of increment vector kF1k. Application of this method to free surface hydraulic ¯ows is also under

way. It is equally useful to explore the strategy of tangent matrix updating such that the updates are

kept to a minimum.
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